opendvp.plotting.pca_loadings#
- opendvp.plotting.pca_loadings(adata, top=30, n_pcs=2, return_fig=False, ax=None, **kwargs)#
Plot PCA protein loadings for the top features in the first two principal components.
Parameters#
- adataAnnData
Annotated data matrix with PCA results in adata.varm[‘PCs’] and adata.uns[‘pca’][‘variance_ratio’].
- topint, optional
Number of top features to label per PC.
- n_pcsint, optional
Number of principal components to plot (default 2).
- return_figbool, optional
If True, returns the matplotlib Figure object for further customization. If False, shows the plot.
- axmatplotlib.axes.Axes, optional
Axes object to plot on. If None, a new figure and axes are created.
- **kwargs
Additional keyword arguments passed to matplotlib scatter.
Returns:#
- figmatplotlib.figure.Figure or None
The figure object if return_fig is True, otherwise None.