Tools#

Filtering#

tl.filter_adata_by_gates(adata, gates[, ...])

Filter an AnnData object to retain only markers specified in the gates DataFrame.

tl.filter_by_abs_value(adata, feature_name)

Filter cells in an AnnData object by a range of values for a specified feature.

tl.filter_by_annotation(adata, path_to_geojson)

Filter cells by annotation in a geojson file using spatial indexing.

tl.filter_by_ratio(adata, end_cycle, start_cycle)

Filter cells by the ratio of two markers in an AnnData object.

tl.filter_features_byNaNs(adata[, ...])

Filter out proteins that have a NaN proportion above the threshold, for each group in the grouping variable.

Imputation#

tl.impute_gaussian(adata[, mean_shift, ...])

Impute missing values in an AnnData object using a Gaussian distribution.

Spatial#

tl.spatial_autocorrelation(adata[, method, ...])

Compute spatial autocorrelation statistics (Moran's I or Geary's C) for each gene in an AnnData object.

tl.spatial_hyperparameter_search(adata[, ...])

Perform a hyperparameter search over a range of threshold values.

Statistics#

tl.stats_anova(adata, grouping[, ...])

Perform one-way ANOVA for all columns of an AnnData object across all groups in a categorical column.

tl.stats_average_samples(adata, categories)

Average samples based on specified categories in adata.obs.

tl.stats_bootstrap(dataframe[, n_bootstrap, ...])

Evaluate the variability of feature-level coefficient of variation (CV) via bootstrapping.

tl.stats_ttest(adata, grouping, group1, group2)

Perform a t-test for all columns of an AnnData object between two groups.

Utils#

tl.phenotype_cells(adata, phenotype[, gate, ...])